1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#![allow(non_snake_case)]

use matrix::decomposition::SymmetricEigen;
use matrix::format::{Compressed, Conventional};
use matrix::operation::{Multiply, MultiplyInto};
use matrix::{Matrix, Size};
use std::ops::{Deref, DerefMut};
use std::{mem, ptr};

use {Circuit, Config, Result};

#[cfg(test)]
mod tests;

/// A temperature simulator.
pub struct Simulator {
    config: Config,
    system: System,
}

struct System {
    units: usize,
    nodes: usize,
    spots: usize,
    C: Compressed<f64>,
    E: Conventional<f64>,
    F: Conventional<f64>,
    S: State,
}

struct State(Vec<f64>);

impl Simulator {
    /// Create a simulator.
    pub fn new(circuit: Circuit, config: Config) -> Result<Simulator> {
        let Circuit { capacitance, conductance, distribution, aggregation } = circuit;
        let ((nodes, units), spots) = (distribution.dimensions(), aggregation.rows());
        debug_assert_eq!(aggregation.columns(), nodes);
        let mut D = capacitance;
        for value in D.iter_mut() {
            *value = (1.0 / *value).sqrt();
        }
        let mut A = conductance;
        for (i, j, value) in A.iter_mut() {
            *value *= -D[i] * D[j];
        }
        let A = Conventional::from(A);
        let (U, L) = ok!(SymmetricEigen::decompose(&A));
        let mut T1 = A;
        let mut T2 = Conventional::zero(nodes);
        for i in 0..nodes {
            let factor = ((config.time_step * L[i]).exp() - 1.0) / L[i];
            for j in 0..nodes {
                T1[(i, j)] = factor * U[(j, i)] * D[j];
            }
        }
        T1.multiply_into(&distribution, &mut T2.values[..(nodes * units)]);
        let F = U.multiply(&T2.values[..(nodes * units)]);
        for i in 0..nodes {
            let factor = (config.time_step * L[i]).exp();
            for j in 0..nodes {
                T1[(i, j)] = factor * U[(j, i)];
            }
        }
        let mut E = T2;
        unsafe { E.erase() };
        U.multiply_into(&T1, &mut E);
        let C = aggregation.multiply(&D);
        Ok(Simulator {
            config: config,
            system: System {
                units: units, nodes: nodes, spots: spots,
                C: C, E: E, F: F, S: State::new(nodes),
            },
        })
    }

    /// Perform the simulation.
    pub fn next(&mut self, P: &[f64], Q: &mut [f64]) {
        let Config { ambience, .. } = self.config;
        let System { units, nodes, spots, ref C, ref E, ref F, ref mut S } = self.system;
        let steps = P.len() / units;
        debug_assert_eq!(P.len(), units * steps);
        debug_assert_eq!(Q.len(), spots * steps);
        S.next(nodes, steps);
        F.multiply_into(P, &mut S[nodes..]);
        for i in 0..steps {
            let (from, into) = S[(i * nodes)..((i + 2) * nodes)].split_at_mut(nodes);
            E.multiply_into(from, into);
        }
        for value in Q.iter_mut() {
            *value = ambience;
        }
        C.multiply_into(&S[nodes..], Q);
    }

    /// Return the configuration.
    pub fn config(&self) -> &Config {
        &self.config
    }
}

impl State {
    fn new(nodes: usize) -> State {
        State(vec![0.0; 2 * nodes])
    }

    fn next(&mut self, nodes: usize, steps: usize) {
        let buffer = &mut self.0;
        let current = buffer.len();
        let required = (steps + 1) * nodes;
        debug_assert!(current >= nodes && current % nodes == 0);
        unsafe {
            if buffer.capacity() < required {
                let mut new = vec![0.0; nodes * (steps + 1)];
                ptr::copy_nonoverlapping(&buffer[current - nodes], new.as_mut_ptr(), nodes);
                mem::replace(buffer, new);
            } else {
                ptr::copy_nonoverlapping(&buffer[current - nodes], buffer.as_mut_ptr(), nodes);
                ptr::write_bytes(buffer.as_mut_ptr().offset(nodes as isize), 0, required - nodes);
                buffer.set_len(required);
            }
        }
    }
}

impl Deref for State {
    type Target = [f64];

    #[inline(always)]
    fn deref(&self) -> &[f64] {
        &self.0
    }
}

impl DerefMut for State {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut [f64] {
        &mut self.0
    }
}