1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
use lapack::fortran as backend;

use Result;
use decomposition::{SingularValue, SymmetricEigen};
use format::{Conventional, Diagonal};

macro_rules! success(
    ($info:expr) => (
        if $info < 0 {
            raise!("encountered invalid arguments");
        } else if $info > 0 {
            raise!("failed to converge");
        }
    );
);

impl SingularValue<f64> for Conventional<f64> {
    fn decompose(&self) -> Result<(Conventional<f64>, Diagonal<f64>, Conventional<f64>)> {
        let (m, n) = (self.rows, self.columns);
        let mut left = unsafe { Conventional::with_uninitialized(m) };
        let mut values = unsafe { Diagonal::with_uninitialized((m, n)) };
        let mut right = unsafe { Conventional::with_uninitialized(n) };
        try!(singular_value(&self, &mut left, &mut values, &mut right, m, n));
        Ok((left, values, right))
    }
}

impl SymmetricEigen<f64> for Conventional<f64> {
    fn decompose(&self) -> Result<(Conventional<f64>, Diagonal<f64>)> {
        debug_assert_eq!(self.rows, self.columns);
        let mut vectors = self.clone();
        let mut values = unsafe { Diagonal::with_uninitialized(self.rows) };
        try!(symmetric_eigen(&mut vectors, &mut values, self.rows));
        Ok((vectors, values))
    }
}

fn singular_value(matrix: &[f64], left: &mut [f64], values: &mut [f64], right: &mut [f64],
                  m: usize, n: usize) -> Result<()> {

    debug_assert_eq!(matrix.len(), m * n);
    debug_assert_eq!(left.len(), m * m);
    debug_assert_eq!(values.len(), min!(m, n));
    debug_assert_eq!(right.len(), n * n);

    let (m, n) = (m as i32, n as i32);

    let mut matrix = matrix.to_vec();

    let mut info = 0;
    let mut iwork = unsafe { buffer!(8 * min!(m, n)) };

    let mut work = [0.0];
    backend::dgesdd(b'A', m, n, &mut matrix, m, values, left, m, right, n, &mut work, -1,
                    &mut iwork, &mut info);
    success!(info);

    let lwork = work[0] as i32;
    let mut work = unsafe { buffer!(lwork) };
    backend::dgesdd(b'A', m, n, &mut matrix, m, values, left, m, right, n, &mut work, lwork,
                    &mut iwork, &mut info);
    success!(info);

    Ok(())
}

fn symmetric_eigen(matrix: &mut [f64], values: &mut [f64], m: usize) -> Result<()> {
    debug_assert_eq!(matrix.len(), m * m);
    debug_assert_eq!(values.len(), m);

    let m = m as i32;

    let mut info = 0;

    let mut work = [0.0];
    let mut iwork = [0];
    backend::dsyevd(b'V', b'U', m, matrix, m, values, &mut work, -1, &mut iwork, -1, &mut info);
    success!(info);

    let lwork = work[0] as i32;
    let liwork = iwork[0];
    let mut work = unsafe { buffer!(lwork) };
    let mut iwork = unsafe { buffer!(liwork) };
    backend::dsyevd(b'V', b'U', m, matrix, m, values, &mut work, lwork, &mut iwork, liwork,
                    &mut info);
    success!(info);

    Ok(())
}

#[cfg(test)]
mod tests {
    use assert;
    use prelude::*;

    #[test]
    fn singular_value() {
        let matrix = Conventional::from_vec((4, 2), matrix![
            1.0, 2.0;
            3.0, 4.0;
            5.0, 6.0;
            7.0, 8.0;
        ]);

        let (left, values, right) = SingularValue::decompose(&matrix).unwrap();

        assert::close(&*left, &*vec![
            -1.524832333102012e-01, -3.499183718079640e-01, -5.473535103057272e-01,
            -7.447886488034903e-01, -8.226474722256604e-01, -4.213752876845798e-01,
            -2.010310314350211e-02,  3.811690813975744e-01, -3.945010222838286e-01,
             2.427965457043579e-01,  6.979099754427756e-01, -5.462054988633035e-01,
            -3.799591338775954e-01,  8.006558795100630e-01, -4.614343573873367e-01,
             4.073761175486993e-02,
        ], 1e-14);

        assert::close(&*values, &*vec![1.426909549926149e+01, 6.268282324175424e-01], 1e-14);

        assert::close(&*right, &*vec![
            -6.414230279950722e-01, 7.671873950721771e-01, -7.671873950721771e-01,
            -6.414230279950722e-01,
        ], 1e-14);
    }

    #[test]
    fn symmetric_eigen() {
        let matrix = Conventional::from_vec(4, matrix![
            1.0, 1.0 / 2.0, 1.0 / 3.0, 1.0 / 4.0;
            1.0 / 2.0, 1.0, 2.0 / 3.0, 1.0 / 2.0;
            1.0 / 3.0, 2.0 / 3.0, 1.0, 3.0 / 4.0;
            1.0 / 4.0, 1.0 / 2.0, 3.0 / 4.0, 1.0;
        ]);

        let (vectors, values) = SymmetricEigen::decompose(&matrix).unwrap();

        assert::close(&*vectors, &*vec![
             6.931852607427760e-02, -3.617963298359111e-01,  7.693670370857654e-01,
            -5.218933989868291e-01, -4.422228501075730e-01,  7.420398064553687e-01,
             4.863601702209238e-02, -5.014483167053618e-01, -8.104763801066263e-01,
            -1.877143925990472e-01,  3.009681045547824e-01,  4.661647178209991e-01,
             3.778384973436192e-01,  5.322063962074435e-01,  5.613618263961305e-01,
             5.087900565323598e-01,
        ], 1e-14);
        assert::close(&*values, &*vec![
            2.077754859180120e-01, 4.078328841178751e-01, 8.482291554779129e-01,
            2.536162474486201e+00,
        ], 1e-14);
    }
}